MODULAR CONSTRUCTION Council

Conseil de la CONSTRUCTION MODULAIRE

Canadian Home Builders' Association Association Canadienne Des Constructeurs D'Habitations

WORKING WITH MODULAR

CHBA Webinar Series 2022/2023

MODULAR CONSTRUCTION

Conseil de la CONSTRUCTION MODULAIRE

Canadian Home Builders' Association Association Canadienne Des Constructeurs D'Habitations 1. MODULAR CONSTRUCTION 101 (APR 28) 2. MODULAR AND THE ENVIRONMENT (JUN 23)

3. THE MODULAR PROCESS (NOV 2)
4. CODES, STANDARDS & REGS FOR MODULAR (NOV 17)
5. FINANCING FOR FACTORY-BUILT (DEC 15)

6. MARKET DATA, INDUSTRY TRENDS & PRODUCT SHOWCASE (FEB/MAR 2023)

WORKING WITH MODULAR

CHBA Webinar Series 2022/2023

Conseil de la CONSTRUCTION MODULAIRE

MODULAR CONSTRUCTION

Council

Canadian Home Builders' Association Association Canadienne Des Constructeurs D'Habitations

Energy Efficiency / Net Zero Energy
 Carbon Emissions & Sustainability
 Resilience

Conseil de la CONSTRUCTION MODULAIRE

MODULAR CONSTRUCTION

Council

Canadian Home Builders' Association Association Canadienne Des Constructeurs D'Habitations

Today's Guest Speakers:

- Clarice Kramer
- Cory Warms
- Dr. Mohamed Al-Hussein

"Modular and the Environment" What are we talking about?

Modular Environmental Achievements

- 1. R2000 & EnviroHome®
- CMHC Net Zero EQuilibrium[™] home
- 3. BuiltGreen®
- Winner of "Most Efficient House" Award & "Energy Efficient Community" Award 2012
- 5. North Ridge CO₂ Comparison

Modular Net Zero Clarice Kramer

- Case study #3
- NZ program requirements
- Carbon emissions

Topic: MODULAR and the ENVIRONMENT

Building construction, materials and energy performance all have a profound affect on the environment and these issues are all connected.

- 1. Energy Efficiency = <u>how much</u> energy is needed to keep a house comfortable and safe for its occupants
 - **Carbon** = a. <u>what building materials</u> were used
 - b. how much energy was needed to make these materials
 - c. how much energy was used to transport these materials to the site
 - d. what was the source of that energy and what are the by-products
- 3. Resilience = our ability to <u>endure</u> a loss of power or <u>resist/recover from</u> damage due to flood, fire, wind, earthquake...

itural Resources Ressources naturelles inada Canada

Focus: MODULAR + NET ZERO

Net Zero Building Performance addresses these issues: Energy Efficiency, Carbon and Resilience

MODULAR CONSTRUCTION IS AN IDEAL WAY TO ACHIEVE NET ZERO BUILDING PERFORMANCE

The following presentation takes a closer look at a factory-built home and identifies what was required to achieve Net Zero Certification

itural Resources Ressources naturelles Inada Canada

Background Info: **Net Zero Modular Case Study Project**

Market ready, factory-built homes were studied in 10 locations across Canada

Factory Specs were modeled in Hot2000 and compared to Net Zero

Results: Minimal Upgrades were required to meet CHBA Net Zero Homes Performance Requirements

10 Case Study Locations

LEEP Net Zero Modular Case Study Project

Controlle, AB

4 builders - 10 factory-built single detached homes 1085 SF - 1693 SF

above grade finished area

-

Prince Albert, SK

Winkler, MB

THE REAL PROPERTY AND

THE COL CALL BOAR 1

Charlottetown, PEI

LEEP studied three variations of this one-piece modular home, in three climate zones

Case Study #5

Case Study #3

PV System: \$23,555 (South)	PV System: \$22-25K (S-E)	PV System: \$ 31-35 (S-E)
Winkler, Manitoba	Prince Albert, Saskatchewan	Arviat, Nunavut
Climate Zone 7A	Climate Zone 7B	Climate Zone 8
1375 SF modular + 967 SF site built garage and porch	1375 SF modular + side porch and separate front entry	1375 SF modular + wrap- around porch two entries
Insulated 8' basement	Insulated 8' basement	No bsmt/Piles+Insl Floor Plate
One piece modular	One piece modular	One piece modular

Case Study #4

Selected Highlights:

Net Zero is possible in all climate zones

Solar orientation is important to PV efficiency & cost

Off-grid battery storage adds +- \$11-28K

Insulated basement shows a big energy advantage (but not a carbon advantage)

Wind, hybrid or community-energy could be added

Net Zero One-Piece Modular BungalowBuilder:Grandeur Housing Ltd.Location:Winkler, ManitobaCompleted:November 2020Verification by:Sun Ridge Residential Inc.

13

NOW: A CLOSER LOOK AT THIS 'NET ZERO CERTIFIED' MODULAR HOME

NZ Case Study #3

Climate Zone: 7A

Heated Floor Area: 1375 SF above grade 1218 SF below grade

Annual Energy Load: 42 GJ (11802 Kwh)

On-Site Renewable Energy Collection, via Solar PV: 44 GJ (12198KwH)

Compares to Tier 4 Code: 60.4% BETTER (79% w/o appliances)

STANDARD FACTORY SPEC vs NET ZERO SPEC

Hot2000 energy modeling shows only minor upgrades were required

Case Study #3	Grandeur Factory Spec	Net Zero Targets	NZ Min Requirements*
Airtightness ACH@50Pa	2.5	0.6	1.5 for detached
Wall R-Value (effective)	35.8	No change needed	17.5 or by code
Foundation Wall R-Value	27 (ICF)	No change needed	16.9
Underslab R-Value	variable	8	5
Ceiling / Roof R-Value	61.6	No change needed	59.2
Window SHGC	0.4	No change needed	Check code on cooling
Window U-Value	1.6	1.19-1.5	(1.44) Energy Star or eq.
DHW System	NG Induced Draft	Heat pump COP 2.3	Use NRCan online lists
Drainwater Heat Recovery	Not installed	optional	
Space Heating	NG 95% AFUE	Heat pump HSPF 8.5	Use NRCan online lists
Heat Recovery Ventilator %	75%/65%	75%/65%	Use NRCan online lists
Heat system cost estimate	\$4,100	\$14,000	
AC cost estimate	\$2,600	Integrated in heat pump (seer 18.9)	
Hot water tank cost estimate	\$1,300	\$2,700	
Panel Cost estimate	\$48,800	\$25,900	
4	Data generously share	d by Grandeur Housing Ltd.	

*Overall Requirement: Energy performance must be at least **33% better** than the base Reference House. (aprox = Tier 3)

*Refer to: CHBA *Net Zero Home* Labelling Program v1.3 Technical Requirements

> Case Study #3 Loads: 27,918 btu heating +1.67 tons cooling

(80,000 BTU NG furnace was way oversized)

RECORD LOWs the FIRST WINTER: On February 13, 2021 Winnipeg set a new record of -**38.8 Celsius**, the old record of -**37.8** C set in 1879. **This NZ home performed very well!**

'Net Zero' as defined by the CHBA NZ Homes Program

- Is built on familiar NRCan Rating Systems: NRCan ENERGUIDE RATING SYSTEM (ERS) V.15 NRCan 2021 R2000 STANDARD NRCan ENERGY STAR for New Homes (ESNH)
- The Minimum Standards vary by climate zone
- NZ Minimum Standards often align with code but require overall 33% better performance

IMPORTANT NOTE:

Net Zero does NOT require +Tier 5 performance Most Net Zero Homes are at Tier 3 / Tier 4 levels

3.2 Airtightness

3.2.1 Tested Airtightness

1. The house shall be constructed sufficiently airtight such that the whole house air leakage is less th or equal to one of the airtightness targets specified in Table 3, when measured in accordance w the as-operated method based on CAN/CGSB 149.10 "Determination of the Airtightness of Build Envelopes by the Fan Depressurization Method" or NRCan "EnerGuide Rating System Techni Procedures Version 15".

Familia		Tab	le 3: Minimum	Airtightness Targe	ts	
atric	S Building Type	ACH@50Pa	NLAG	210 P2	NLR	@50 Pa
Mer	building type	neme son u	cm ² /m ²	in ² /100 ft ²	L/s/m ²	cfm50/ft ²
	Attached	2.0	1.18	1.70	0.78	0.15
	Detached	1.5	0.75	1.08	0.57	0.11

Minimum Standards are well within reach

- 3.3 Opaque Assemblies
 - 3.3.1 Minimum Effective Thermal Resistance of Opaque Assemblies
 - 1. Effective thermal resistance of opaque assemblies shall not be less than those specified in Table 4 below. Where local prevailing code is more stringent than Table 4, refer to that code.

	Heating Degree Days ²						
Building Assembly	<3000	3000-3999	4000-4999	5000-5999	6000-6999	≥7000	
	RSI (R)						
	NBC Climate Jones						
	4	5	6	7a	7b	8	
Catlines halous atting	6.91	8.67	8.67	10.43	10.43	10.43	
Cellings below attics	(39.2)	(49.2)	(49.2)	(59.2)	(59.2)	(59.2)	
Cathedral ceilings and flat	4.67	4.67	4.67	5.02	5.02	5.02	
roofs	(26.5)	(26.5)	(26.5)	(28.5)	(28.5)	(28.5)	
Malla abava mada3	2.78	3.08	3.08	3.08	3.85	3.85	
walls above grade"	(15.8)	(17.5)	(17.5)	(17.5)	(21.9)	(21.9)	
Floors over unheated	4.67	4.67	4.67	5.02	5.02	5.02	
spaces	(26.5)	(26.5)	(26.5)	(28.5)	(28.5)	(28.5)	
Foundation walls below or	1.99	2.98	2.98	3.46	3.46	3.97	
in contact with the ground	(11.3)	(16.9)	(16.9)	(19.6)	(19.6)	(22.5)	
Unheated floors below frost	0.88	0.88	0.88	0.88	0.88	0.88	
line	(5.0)	(5.0)	(5.0)	(5.0)	(5.0)	(5.0)	
Unheated floors on ground	1.96	1.96	1.96	1.96	1.96	1.96	
above frost line ^{4,5,6}	(11.1)	(11.1)	(11.1)	(11.1)	(11.1)	(11.1)	
Heated or unheated floors					4.44	4.44	
on ground on permafrost ⁵		5	~	-	(25.2)	(25.2)	
Useted fleens on ground ⁵	2.32	2.32	2.32	2.85	2.85	2.85	
neated noors on ground"	(13.2)	(13.2)	(13.2)	(16.2)	(16.2)	(16.2)	
Slabs on grade with integral	1.96	1.96	1.96	3.72	3.72	4.59	
footing ^{4,7,8}	(11.1)	(11.1)	(11.1)	(21.1)	(21.1)	(26.1)	

Table 4: Minimum Effective Thermal Resistance of Opage Assemblies¹

NZ Performance Verification is Required

Energy Modeling is used to calculate Loads and confirm Net Zero Performance

HOW YOUR RATING IS CALCULATED:

Ι.	Rated annual energy consumption	42 GJ/year
II.	Minus renewable energy contribution	- 42 GJ/year
	Equals your EnerGuide rating	= 0 GJ/year

I. Your rated annual energy consumption is the total amount of energy your house would use in a year based on the EnerGuide Rating System standard operating conditions. For your house, this includes 8.35 GJ of passive solar gain.

Energy Sources	Rated Consumption (GJ/year)	Equivalent Units (per year)	Greenhouse Gas Emissions (tonnes/year)		
Electricity	42	11802 kWh	0.0		
Total	42		0.0		

II. On-site renewable power generation systems can offset some or even all of your home's energy consumption. Renewable energy contributions are factored differently for your rating and your greenhouse gas emissions calculations.¹

On-Site Renewable Energy	Estimated Contribution (CJ/year)	Equivalent Units (per year)	Offset Greenhouse Gas Emissions (tonnes/year)	
Electricity	44	12198 kWh	0.0	
Solar water heating	0	0	0.0	
Total	44		0.0	

HOW YOUR CONSUMPTION COMPARES:

Compared to a typical new house, your house uses:

60.4% less energy;

79.1% less energy, when excluding the estimated energy consumption of lighting, appliances and electronics.

THE SOLAR PV SYSTEM

- 1. Calculate Energy Use & Max Loads (in Hot2000 or from utility bills)
- 2. A Solar PV Assessment will consider array options that meet Load requirements

Your Solar System Details

Item	MFT / Supplier	Model / Details	Comments	Quantity
Solar PV Panels	Hanwha	Q.Peak DUO L-G5.2 395W	Tier 1 Solar Panels Half-Cut. Includes 25 Year Warranty.	23
Inverter	Huawei	7.6KTL-USL0-WiFi	Tier 1 Inverter. Includes 10 Year Warranty. Battery Ready.	
Optimizers	Huawei	SUN2000-375W-USP0	Solar Optimization	23
Monitoring	Huawei	Monitoring	Solar System Live Monitoring	
Racking	HB Solar	SkyRail 3	Standard Roof Racking System	2
Critter Guard	Critter Guard	Critter Guard	Optional Critter Guard Will Cost \$1174.38	(
Snow Guard	2		Snow Guard	(
Energy Storage	None	None		(

YOUR SYSTEM SIZE

9.085 KW

Monthly Utility Bills, Post-Solar

Solar PV Produced

Solar Power System Cost	\$23,555
Estimated LDC connection fee *	TBD
Total Cost**:	\$23,555.47
HST (13%)	\$3,062.21
Grand Total To Make The Switch:	\$26,617.68

Summary: Winkler, MB -Net Zero Modular Home CS#3

1. Building Envelope Performance:

- Achieved 60.4% better (min 33% req'd) This compares to TIER 4
- ACH of 0.54 is very impressive! -(exceeded requirement of 1.5 ACH)
- ALL assembly R-values required NO CHANGES (we could look at low-carbon materials)
- R-5 under-slab insulation is required / Insulated basement provides energy advantage
- Energy Star Windows: triple glazed, low-e, argon filled, insulated spacer

2. Renewable Energy System:

Plan for Solar PV at the start of the project / Integrate PV into roof structure (Use IDP)

3. HVAC, mechanicals & electricals:

- Energy Star Appliances significantly reduced –lifetime- loads
- An 80,000 BTU furnace would have been typical / This was way oversized
- 'Right-Sized' the HVAC design to avoid waste and cost (consult HVAC designer, use F280)
- Air Source Heat Pump technology reduced energy consumption dramatically
 - Heat Pump with ducting provides –both- heating and cooling (no additional ac unit is needed)
 - Heat Pump for domestic hot water heating
- Electric equipment (rather than combustion)
 - Allows better Air-Tightness (no vents)
 - Reduces or eliminates harmful and dangerous emissions (no CO2, no carbon monoxide)

A few words on CARBON... NRCan's *Material Carbon Emissions Estimator*

- Free tool to help builders understand the carbon impact of the **building materials** selected
- Can help inform your product selections
- NRCan will be posting the MCE² on the LEEP website very soon.

Created in Partnership with Chris Magwood and Builders for Climate Action

Natural Resources

Canada

Ressou

Canad

	Natural Resources Canada	Ressources naturel Canada	les			
April 2021	Material Ca	arbon Emissi	ons Estimator (MCE ²)	Project Carbo	on Content	
Step 🚺	Import project data from	HOT2000 (If no HOT2	2000 file, skip to Step 2)	Energy Co	nsumption	Energy Generation
				Elec. kWh/yr	N. Gas m ³ /yr	Elec. kWh/yr
	Pr	ess Here to imp	port HO I 2000 Data	8195	1781	0
				Propane L/yr	Oil L/yr	Wood kg/yr
	Clear All (User Input an	d all Assembly Tab	s) Clear This Sheet Only (User Input)	0	0	0
Step 2 Add City Bui	Confirm or enter project Iress: /: Iding Type:	information TRAILS CLARINGTON Single Detached	Province: Ontario Postal code: Evaluation date: 7/26/2021	Operational tonnes CO ₂ e / yr 3.7	Emissions t CO ₂ e / 30 yrs 110	
Sto	reys:	Two storeys	File ID:	Material E	missions	1
Yea Hea	ir Built: ated Floor Area (above grad	e, m²): ^{138.0}	File name:	tonnes CO2e	kg CO2e / m²	
000d Hea	ated Floor Area (below grad	e, m²): ^{72.5}	1 mil	46.5	221	
Hea	ating Degree Days:	3890	Comina Soon!			
es naturelles				(Cana	dä

5 Scenarios – 30 year CO₂ Outlook

Grandeur Net Zero House - <u>Embodied</u> and <u>Operational</u> Carbon Scenarios over 30 Year Outlook

Ressources naturelles

Canada

Natural Resources

Canada

- 1. Grandeur Factory Spec. includes NG Furnace and DHW
- 2. Grandeur Factory Spec. NZE includes HPs for space heating and hot water
- 3. Low Carbon Concrete mixes
- Low Carbon Concrete Mixes +
 Slab on Grade + Carbon storing insulations
- 5. Wood frame Floor + Carbon storing insulations

Tips for easier Net Zero Certification

- 1. Verification is Required this can also be used for performance-based code compliance
 - Certified Energy Advisor or Service Org will help select targets, provide testing and submit required paperwork
 - Energy Modeling is necessary to identify Energy Loads (Hot2000 or similar)
 - Air-Tightness Testing is required: Blower Door Test to confirm ACH
 *Use a two-step process (and a smoke test) to seal leaks; Before Drywall and After Drywall
- 2. Familiar wall assemblies & '*reasonable*'R-values will work
 - Choose R-value target for climate zone (Higher R = Also more Resilient)
 - Energy Modeling allows some flexibility and trade-off, but... check minimum standards <u>first</u>
 - LEEP NZ Wall Guides show familiar wall types with better details for NZ performance
 - Use 'your best' building envelope = Lower Energy Loads = Less Renewable Energy needed/less cost

3. HVAC & mechanicals: Energy Loads must = Energy Collected

- Select High Efficiency equipment & Energy Star Appliances (to reduce loads)
- Cold Climate Air Source Heat Pump Technology makes Net Zero easier (its efficient & low carbon)
- Heat Pumps can be paired with hydronic or forced air systems (radiant floors/zoned forced air/or vintage radiators)
- 'Right-Size' your HVAC design avoid waste and cost (for gas or electric systems)
- Plan for Solar PV / Renewable Energy System at the start. Use <u>LEEP Solar PV Design Guide and IDP</u>.
- Orient Roof to South to optimize Solar PV advantage

latural Resources Ressources naturelles Canada Canada

Modular Netzero Cory Warms

- Factory process for a NZ home
- Challenges and lessons learned
- NZ MURBs

Floor Plate Framing

Plumbing & Floor Ducts

Flooring & Wall Fabrication

Roof Installation

Wiring and Air Barrier

Window Specifications

Window Sealing / Flashing Support

Window Flashing

Basement Site Work

Moving Day! House on Foundation

Basement Windows

Garage Foundation

Mechanicals & Solar PV

CONSTRUCTION MODULAIRE

Interior & Finishes

NZ Home Finished!

NZ feasible for modular MURBs

Drandeur

Willowview Heights Project (2020)

NRCan Project "Affordable, Replicable,

Marketable, Net Zero Ready MURB"

Big Block Construction

Grandeur Housing

CHBA netzero

bigBLCK construction

Natural Resources Canada

Sustainability Mohamed Al-Hussein

- GHG savings in the factory process
- Material Durability
- Waste Reduction
- Embodied Carbon

Industrializing the Building Construction Reduces GHG Sturgeon Foundation North Ridge CO₂ Analysis Report Comparison between Modular and On-Site Construction

48 suites, (40 one-bedroom (594.60 sq ft) and 8 two bedrooms (929.21 sq ft))

Dr. Mohamed Al-Hussein Email: <u>malhussein@ualberta.ca</u>

Winter protection & Temporary structures

Residential Construction Material Waste

CO₂ quantifications

Stage	Description	co2 (kg)	0
1	Stake Out	23	1
2	Deep Services & Foundation Walls	2257	2
3	Backfill & Shallow Trenching	926	3
4	Capping Shallow Services	1057	-
5	Framing Main & Second Joists	482	4
6	Framing Second & Roof	778	5
7	Roofing	514	6
8	Siding & Rough-Ins	381	7
9	Electrical RI & Slabs	344	8
10	Insulation & Boarding	562	9
11	Drywall Taping & Texture	420	10
12	Stage 1 Finishing & Cabinets	167	11
13	Railing & Painting	763	12
14	Tile & Vinyl Flooring	326	13
15	Hardwood & Stage 2 Finishing	270	14
16	Carpet & Finals	326	15
17	Touch-Ups & Pre-Occupancy	311	
	Total	9908	

THE AND

CO₂ quantifications

Stage 5 - Framing		Ν	/laterial		Labour	Installation				
Tasks	Duration (hr)	Trips	Equipment	Trips	Equipment	Equipment	CO2 (kg)	Unit	Qty / Model	Amt (kg/unit)
Framing Main & Second Joists Deliver first floor framing	1	0.5	5t truck				23.2	linear m of wall	63.1	0.37
Deliver first floor framing package -floor	1	0.5	5t truck				23.2	m2 of floor	82.3	0.28
Framing - main floor	16			8	0.5t truck	1 generator, 1 compressor	194.56	m2 of floor	82.3	2.36
Framing - main floor walls	16			8	0.5t truck	1 generator, 1 compressor	194.56	linear m of wall	63.1	0.32
Deliver second floor framing package -floor	1	0.5	5t truck				23.2	m2 of floor	82.3	0.28
Deliver second floor framing package -wall	1	0.5	5t truck				23.2	linear m of wall	63.1	0.37

Activity - Excavation to Gyperete		Duration Material Trips		Crew	Crew trips		Equipment	
	(days)	Qty (trips)	Yehicle	Qty (trips)	Yehicle	Qty (hrs)	Туре	(Kg)
FRAMING MATERIAL DELIVERY (PER FLOOR)	3	15	Ten-Ton Truck			8	Lift	3536
FRAMING (PER FLOOR) WALLS and FLOOR ABOVE	14			112	Van/Car	224	Compressor	6523
						112	Generator	300

CO₂ quantifications

24kg of CO2 per kg of manufactured drywall¹
8.64MJ/Kg of manufactured drywall²
0.76 kg CO2/sf of manufactured drywall³

A conventional 1/2-inch thick sheet of (4 x 8) drywall feet weighs around 57 pounds

CO2 Emissions from Transportation and Crew Trips

Tasks	Duration (hr)		Material Trips	Cr	ew Trips	CO2 (kg)
Load Drywall	2	1	5t truck			46.4
Drywall Boarding	32		5t picker	4	0.5 truck	54.4

Sturgeon Foundation North Ridge CO₂ Analysis Report Comparison between Modular and On-Site Construction

48 suites, (40 suites are one-bedroom suites and 8 two bedrooms) (One-bedroom area of 594.60 sq ft; a two-bedroom suite has 929.21 sq ft.

	Construction	Methodology		
Item	Conventional	Modular	Difference	Difference (%)
Construction Time (Months)	14.3	6.3	7.9	55%
CO2 emissions - construction process (Tonnes of CO2)	98.9	56.3	42.5	43%
CO2 emissions - Winter Heating (Tonnes of CO2)	431.3	247.2	184.0	43%
Total (CO2)	530.1	303.6	226.6	43%
Note:				

These results reflect the comparison between both practices for a stick-frame, 4-storey building with 42 suites. The CO2 emissions for both practices do not include embodied energy, as well emissions due to the usage of electricity. It is assumed then tha

Vehicle	kg/km	Equipment	kg/hr
Concrete Pump	0.98	Bobcat	28.63
Five-Ton Concrete Truck	1.16	Compactor	35
Five-Ton Truck	1.02	Compressor	2.68
Half-ton Truck	0.34	Concrete Finisher	9.65
One-Ton Truck	0.7	Concrete Pump	22.36
Ten-Ton Truck	1.26	Excavator	40
Three axle dump Truck (9m3)	1.9	Generator	2.68
Three-Ton Truck	0.82	Lift	16
Two-Ton Truck	0.76		
Van/Car	0.23		

sample of the activities for CO₂ emission

Finishing Stage

	Conventional Construction						
ctivity - Finishing stage (Suites)	Duration		Material Trips	Crev	/ trips	CO2	
	(days)	Qty (trips)	Vehicle	Qty (trips)	Vehicle	(Kg)	
aint Walls- 1st coat	42	11	Half-ton Truck	84	Van/Car	922	
inishing Stage 1 (Interior doors, baseboard trim and casing)	21	21	Two-Ton Truck	42	Van/Car	1025	
aint Doors & Trim	21	7	Half-ton Truck	84	Van/Car	868	
ile Tub Surrounds	11	11	One-Ton Truck	11	Van/Car	409	
Grout Tile tub surrounds	11			11	Van/Car	101	
itchen+Bath Cabinets	42	11	Five-Ton Truck	84	Van/Car	1222	
oot & Duct OTR & Fan Covers	7	7	One-Ton Truck			196	
leasure P.Lam Countertops	42			42	Van/Car	386	
weep & Shop Vac	42			42	Van/Car	386	
ino	42	4	One-Ton Truck	42	Van/Car	498	
inishing Stage 2 (Baseboards in bathrooms, closets & laundry rms)	42			42	Van/Car	386	
leasure & Drill Wire Shelves	7			7	Van/Car	64	
nstall Laminate Countertops	42	42	Half-ton Truck			571	
aint Final (bath+clos+laund)	42	11	Half-ton Truck	84	Van/Car	922	
lechanical Final	42	42	One-Ton Truck			1176	
Carpet	42	42	One-Ton Truck			1176	
Construction Clean Stage 1	42			42	Van/Car	386	
Vash Windows	7		1	7	Van/Car	64	
Vindow+Door Lockout	4			7	Van/Car	64	
inal Paint (Kitchen+Bed+Liv)	42	11	Half-ton Truck	84	Van/Car	922	
Vire Shelves Install	4	4	One-Ton Truck			112	
lectrical Final	21	21	Half-ton Truck			286	
inal Finish (bifolds)	42			84	Van/Car	773	
hower Doors+Mirror Install	7	15	Half-ton Truck	15	Van/Car	342	
Vindow Coverings	7	7	Half-ton Truck	7	Van/Car	160	
TR & Dishwasher Delivery	7	7	Five-Ton Truck			286	
stall Dishwashers	4			4	Van/Car	37	
istall OTRs	11			11	Van/Car	101	
ppliance Delivery & Install	7	7	Five-Ton Truck	7	Van/Car	350	
Vasher & Dryer Install	7			7	Van/Car	64	
itial Inspection	21			21	Van/Car	193	
eficiencies	38			114	Van/Car	1049	
re-Occ Clean	14			14	Van/Car	129	
re-Occ Orientation	14			14	Van/Car	129	
Correct Deficiencies	38			114	Van/Car	1049	
inal Clean - Possession	14			14	Van/Car	129	
ossession	14			14	Van/Car	129	

	Modular Construction				
Activity - Finishing stage (Suites)	Mate	rial Trips	Modular		
	Qty (trips)	Vehicle	Material trips		
Paint Walls- 1st coat	2	Two-Ton Truck	60.8		
Finishing Stage 1 (Interior doors, baseboard trim and casing)	4	Two-Ton Truck	121.6		
Paint Doors & Trim	2	One-Ton Truck	56		
Tile Tub Surrounds	3	Two-Ton Truck	91.2		
Grout Tile tub surrounds			0		
Kitchen+Bath Cabinets	11	Five-Ton Truck	448.8		
Boot & Duct OTR & Fan Covers	2	One-Ton Truck	56		
Measure P.Lam Countertops			0		
Sweep & Shop Vac			0		
Lino	1	Two-Ton Truck	30.4		
Finishing Stage 2 (Baseboards in bathrooms, closets & laundry rms)			0		
Measure & Drill Wire Shelves			0		
Install Laminate Countertops	4	Two-Ton Truck	121.6		
Paint Final (bath+clos+laund)	2	Two-Ton Truck	60.8		
Mechanical Final	5	Two-Ton Truck	152		
Carpet	5	Two-Ton Truck	152		
Construction Clean Stage 1			0		
Wash Windows			0		
Window+Door Lockout			0		
Final Paint (Kitchen+Bed+Liv)	2	Two-Ton Truck	60.8		
Wire Shelves Install	3	One-Ton Truck	84		
Electrical Final	1	One-Ton Truck	28		
Final Finish (bifolds)			0		
Shower Doors+Mirror Install	5	One-Ton Truck	140		
Window Coverings	2	Two-Ton Truck	60.8		
OTR & Dishwasher Delivery	7	Five-Ton Truck	285.6		
Install Dishwashers			0		
Install OTRs			0		
Appliance Delivery & Install	7	Five-Ton Truck	285.6		
Washer & Dryer Install			0		
Initial Inspection			0		
Deficiencies			0		
Pre-Occ Clean			0		
Pre-Occ Orientation			0		
Correct Deficiencies			0		
Final Clean - Possession			0		
Possession			0		
	1		0000		

2,296 Kg CO₂

17,064 Kg CO₂ 86% CO₂

Transformation from conventional construction to panelized construction: Landmark Case study

58

Dr. Mohamed Al-Hussein

June 2022

Background

Landmark, which has around 44-years' history, is a well-known residential home builder in Alberta. It started changing from conventional (stick-build) construction method to panelized construction method since 2005. Until 2012 it has built a completely panelized production line. By comparing Landmark's previous production with the current, we find that this kind of transformation will lead to a highly improvement on production rate and a reduction in CO2 emissions and operation fees.

Conventional Construction to Panelized Construction

Number of Superintendents

Production Rate

Invoices

Inspections

Office Space vs Plant Space

Less uncertainties related to the hand-

Production Rate

247

Conventional Construction

Comparing with conventional construction method, the cycle time of panelized construction will decease about 97 days, changing from 247 days per house to 145 days per house.

40% decrease in cycle time

40% increase in production rate

Panelized Construction

Cycle Time (Days/House)

Cycle time reduced by:

off to different

trades

- Smoother turnover from house to house
- Higher predictability

Number of Superintendents

The required number of superintendents will reduce from **46** to **27**.

Number of the managed houses per superintendent

156

With the application of panelized construction, the number of the houses one superintendent can inspect per year will increase by 15 (5 years increase by 78, 10 years increase by 156).

63

Stick Built Construction

Panelized Construction

Number of Superintendents

For building 1000 houses per year, the required number of superintendents will reduce from **46** to **27**.

Number of Superintendents - Pickup trucks

Panelized Construction Conventional Construction 0 10 20 30 40 50

TRUCKS

The reduction of **41%** superintendents will lead to about 41% reduction on pickup trucks.

Number of Superintendents - Fuel Consumption

The reduction of trucks will reduce fuel consumption 1890.16 Litres/month which is 22,681.92 L/year

Number of Superintendents - CO2 Emissions

The reduction of trucks will lead to 4.37 ton less CO2 emissions per month, 52.46 ton less per year

Office Area Change

Resilience Frank Lohmann

- Extreme Heat
- Flooding
- Rain Storm/Hail
- Tornado
- Wildfire

Conseil de la							
Finished Home							
Risk / Resilience	On-site	In-factory					
Overheating Protection	same (by A/C, window orientation	on, shading devices)					
Flood Protection	same (site design, onsite plumb	oing, some electrical changes)					
Rain/Hail Resistance	same (by roofing material)						
Tornado Resistance	code compliance (structural) <	+ greater resistance (transport)					
Wildfire Resilience	same (by non-combustible or ig	nition-resistant building material)					

During Construction

Risk / Resilience	On-site	In-factory
Overheating Protection	depends on degree of completion of mechanical	protected from sunlight, (conditioned environment)
Flood Protection	possible building damage	site damage only
Rain/Hail Resistance	possible building damage	no damage while in factory
Tornado Resistance	possible building damage	no damage while in factory
Wildfire Resilience	possible building damage	no damage while in factory

Conseil de la CONSTRUCTION MODULAIRE

Canadian Home Builders' Association Association Canadienne Des Constructeurs D'Habitations

CONTACTS

Clarice.Kramer@nrcan-rncan.gc.ca CoryW@GrandeurHousing.com Malhussein@ualberta.ca Frank.Lohmann@chba.ca Kathleen.Maynard@chba.ca

MODULAR AND THE ENVIRONMENT

Questions?

Next modular webinar: November 2, 2022 Recordings: <u>https://www.chba.ca/modular</u>